Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Gamme d'année
1.
International Journal of Infectious Diseases ; 95:288-293, 2020.
Article Dans Anglais | CAB Abstracts | ID: covidwho-1409664

Résumé

Objectives: Since January 23rd 2020, stringent measures for controlling the novel coronavirus epidemics have been gradually enforced and strengthened in mainland China. The detection and diagnosis have been improved as well. However, the daily reported cases staying in a high level make the epidemics trend prediction difficult.

2.
arxiv; 2021.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2108.05067v2

Résumé

Medical imaging technologies, including computed tomography (CT) or chest X-Ray (CXR), are largely employed to facilitate the diagnosis of the COVID-19. Since manual report writing is usually too time-consuming, a more intelligent auxiliary medical system that could generate medical reports automatically and immediately is urgently needed. In this article, we propose to use the medical visual language BERT (Medical-VLBERT) model to identify the abnormality on the COVID-19 scans and generate the medical report automatically based on the detected lesion regions. To produce more accurate medical reports and minimize the visual-and-linguistic differences, this model adopts an alternate learning strategy with two procedures that are knowledge pretraining and transferring. To be more precise, the knowledge pretraining procedure is to memorize the knowledge from medical texts, while the transferring procedure is to utilize the acquired knowledge for professional medical sentences generations through observations of medical images. In practice, for automatic medical report generation on the COVID-19 cases, we constructed a dataset of 368 medical findings in Chinese and 1104 chest CT scans from The First Affiliated Hospital of Jinan University, Guangzhou, China, and The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China. Besides, to alleviate the insufficiency of the COVID-19 training samples, our model was first trained on the large-scale Chinese CX-CHR dataset and then transferred to the COVID-19 CT dataset for further fine-tuning. The experimental results showed that Medical-VLBERT achieved state-of-the-art performances on terminology prediction and report generation with the Chinese COVID-19 CT dataset and the CX-CHR dataset. The Chinese COVID-19 CT dataset is available at https://covid19ct.github.io/.


Sujets)
COVID-19 , Maladie d'Addison , Épilepsie réflexe
3.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2010.07497v1

Résumé

Developing conversational agents to interact with patients and provide primary clinical advice has attracted increasing attention due to its huge application potential, especially in the time of COVID-19 Pandemic. However, the training of end-to-end neural-based medical dialogue system is restricted by an insufficient quantity of medical dialogue corpus. In this work, we make the first attempt to build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG, with more than 17K conversations collected from the online health consultation community. Five different categories of entities, including diseases, symptoms, attributes, tests, and medicines, are annotated in each conversation of MedDG as additional labels. To push forward the future research on building expert-sensitive medical dialogue system, we proposes two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation. To acquire a clear comprehension on these two medical dialogue tasks, we implement several state-of-the-art benchmarks, as well as design two dialogue models with a further consideration on the predicted entities. Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset, and the response quality can be enhanced with the help of auxiliary entity information. From human evaluation, the simple retrieval model outperforms several state-of-the-art generative models, indicating that there still remains a large room for improvement on generating medically meaningful responses.


Sujets)
COVID-19
4.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2006.03744v1

Résumé

Beyond the common difficulties faced in the natural image captioning, medical report generation specifically requires the model to describe a medical image with a fine-grained and semantic-coherence paragraph that should satisfy both medical commonsense and logic. Previous works generally extract the global image features and attempt to generate a paragraph that is similar to referenced reports; however, this approach has two limitations. Firstly, the regions of primary interest to radiologists are usually located in a small area of the global image, meaning that the remainder parts of the image could be considered as irrelevant noise in the training procedure. Secondly, there are many similar sentences used in each medical report to describe the normal regions of the image, which causes serious data bias. This deviation is likely to teach models to generate these inessential sentences on a regular basis. To address these problems, we propose an Auxiliary Signal-Guided Knowledge Encoder-Decoder (ASGK) to mimic radiologists' working patterns. In more detail, ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning. The core structure of ASGK consists of a medical graph encoder and a natural language decoder, inspired by advanced Generative Pre-Training (GPT). Experiments on the CX-CHR dataset and our COVID-19 CT Report dataset demonstrate that our proposed ASGK is able to generate a robust and accurate report, and moreover outperforms state-of-the-art methods on both medical terminology classification and paragraph generation metrics.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche